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ABSTRACT 

This method of analysis for kinetic data of solid state chemical reactions takes advan- 
tage or the binomial series expansion to normalize various mathematical expressions 
related to various solid state models into a power series. This facilitates analysis by com- 
puter methods, in that deviations of the various models will he perceptible at the outset. 

Let us first define the general differential form for any solid decomposi- 
tion reaction. Thus 

Integrating the above equation gives us 

If we were to plot g(a) on the v-axis and time t on the x-axis, we would 
notice slight or major deviations from the predicted straight line. This 
method fits a polynomial equation to the data by means of a least-squares 
analysis, whereby several curve-fitting tests are applied in order to determine 
which mathematical model agrees with the data. 

In this method the independent variable, (Y, the fraction reacted, is 
espanded in a power series and then subject to a variety of statistical tests to 
determine the extent of its linearity. Obviously, from the inspection of the 
empirical polynomial equation one can see from the magnitude of the coeffi- 
cients its deviation from a straight line. In addition to a purely mathematical 
analysis, we can also conjecture about the physical phenomenon that the 
solid sample underwent. For example, if we subject the data to an Avrami- 
Erofeyev equation and perceive deviations from linearity at large values of 
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Q, we can conclude that the kinetics of the reaction are no longer obeyed 
when those deviations become manifest. In other words, we can conclude 
that either the model does not fit the data accurately, leading to the assump- 
tion that the sample reacts by a completely different mechanism, or there is 
a change in mechanism occurring at some interval, in which the mathematics 
is detecting its incipient deviation. Since the mechanics of polynomial regres- 
sions are well established, the power series tJrpe formula was chosen. All of 
the expansions reduce to a power series form, thus facilitating handling of 
the data. A tremendous savings in computer time comes about because the 
same functional relationship is used for all the final statistical analysis. 

The first step in analyzing the integrated form of the kinetics expression is 
to expand it in a power series and then apply the principles that were 
expounded in the previous section. The binomial theorem can be used to 
best advantage in that in this expanded form the polynomial can be reduced 
to a power series. 

The binomial theorem states 

-l<CY<l 
k=O 

Expanding eqn. (4) we arrive at 

(1 + ,)P= 1 + pa + PM - lb2 + PM - l)(P -- 2)a3 + 
2! 3! 

(3) 

Let us now apply the above results to the various solid state models. For the 
contracting lnodel of the form 

g(a) = 1 - (1 - Q)“2 

we have an expansion 

(1 -a) m=1_~___-_ cK* 5 

2 8 16 
- - a4 + . . . 

128 

Therefore, 

(Y* (Y3 5 l_(~__)l~2=;+_+-++ 
8 16 128u4+--- 

which is of the form 

1 - (1 - ,)“2 = U, + Q,Ol + Q261* + Q3Ly3 + CqLy4 + . . . 

where 

Qo = 0 QI =0.5 a2 = 0.125 

03 = 0.0625 a 4 =0.0390625 

For contracting geometry of the form 

g((Y) = 1 - (1 - Q)“3 

(5) 

(6) 

(7) 

(8) 

(9) 
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we arrive at the final equation 

(IO) 

For the Ginstling-Brounshtein equation which is of the form 

Ia) = (1 -$a) - (1 -(Y)“3 

we arrive at the final equation 

For the first-order nucleation 
logarithmic form. 

(11) 

a3 + . . . (12) 
type mechanism, we must fist expand the 

Thus, for the nucleation of the form 

g(cu) = --ln(1 -Q) (13) 

we arrive at the final form 

2 3 

--ln( 1 --)=&+Ly+~+__ 
2 3 

(14) 

For the two-dimensional diffusion equation which is of the form 

g(cr) = (1 --C-K) ln(1 --cu) + (lr 

we arrive at the final equation 

(15) 

(1 -- cy) ln(1 -(lL)+CY=~QZ+~ly3+~~yJ (16) 

We run into higher-order models which do not lend themselves readily to a 
series expansion. In that case we could either approximate such models and 
then by checking the resultant coefficients we could infer as to the nature of 
the model or simply use other techniques for those difficult models. If there 
are deviations in the model, they will manifest themselves by deviations in 
the fraction reacted. Once again, this may be due to the inadequacy of the 
model or it may be due to a change in mechanism of reaction. 
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